Stabilization of recA protein-ssDNA complexes by the single-stranded DNA binding protein of Escherichia coli.

نویسندگان

  • S W Morrical
  • M M Cox
چکیده

In vitro recombination reactions promoted by the recA protein of Escherichia coli are enhanced by the single-stranded DNA binding protein (SSB). SSB affects the assembly of the filamentous complexes between recA protein and ssDNA that are the active form of the recA protein. Here, we present evidence that SSB plays a complex role in maintaining the stability and activity of recA-ssDNA filaments. Results of ATPase, nuclease protection, and DNA strand exchange assays suggest that the continuous presence of SSB is required to maintain the stability of recA-ssDNA complexes under reaction conditions that support their recombination activity. We also report data that indicate that there is a functional distinction between the species of SSB present at 10 mM magnesium chloride, which enhances recA-ssDNA binding, and a species present at 1 mM magnesium chloride, which displaces recA protein from ssDNA. These results are discussed in the context of current models of SSB conformation and of SSB action in recombination activities of the recA protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous association of Escherichia coli single-stranded DNA binding protein with stable complexes of recA protein and single-stranded DNA.

The single-stranded DNA binding protein of Escherichia coli (SSB) stimulates recA protein promoted DNA strand exchange reactions by promoting and stabilizing the interaction between recA protein and single-stranded DNA (ssDNA). Utilizing the intrinsic tryptophan fluorescence of SSB, an ATP-dependent interaction has been detected between SSB and recA-ssDNA complexes. This interaction is continuo...

متن کامل

The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein.

The nucleation step of Escherichia coli RecA filament formation on single-stranded DNA (ssDNA) is strongly inhibited by prebound E. coli ssDNA-binding protein (SSB). The capacity of RecA protein to displace SSB is dramatically enhanced in RecA proteins with C-terminal deletions. The displacement of SSB by RecA protein is progressively improved when 6, 13, and 17 C-terminal amino acids are remov...

متن کامل

Properties of the high-affinity single-stranded DNA binding state of the Escherichia coli recA protein.

The properties of the high-affinity single-stranded DNA (ssDNA) binding state of Escherichia coli recA protein have been studied. We find that all of the nucleoside triphosphates that are hydrolyzed by recA protein induce a high-affinity ssDNA binding state. The effect of ATP binding to recA protein was partially separated from the ATP hydrolytic event by substituting calcium chloride for magne...

متن کامل

Electron microscopic visualization of the RecA protein-mediated pairing and branch migration phases of DNA strand exchange.

The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) D...

متن کامل

The physical and enzymatic properties of Escherichia coli recA protein display anion-specific inhibition.

The enzymatic activities of Escherichia coli recA protein are sensitive to ionic composition. Here we report that sodium glutamate (NaGlu) is much less inhibitory to the DNA strand exchange, DNA-dependent ATPase, and DNA binding activities of the recA protein than is NaCl. Both joint molecule formation and complete exchange of DNA strands occur (albeit at reduced rates) at NaGlu concentrations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 29 3  شماره 

صفحات  -

تاریخ انتشار 1990